发布于 : Oct 23, 2024
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。
了解更多
Oct 2024
评估
LLMLingua 通过使用小型语言模型压缩提示,去除非必要的 token,从而提高大语言模型(LLM)的效率,并在性能损失最小的情况下实现这一目标。 这种方法使大语言模型(LLM)能够在有效处理较长提示的同时,保持推理和上下文学习能力,解决了成本效率、推理延迟和上下文处理等挑战。LLMLingua 与各种大语言模型兼容,无需额外训练,并支持如 LLamaIndex 等框架,它非常适合优化大语言模型的推理性能。